Menoufiya University	Department: Pasic Science of
Faculty of Engineering	Engineering
Shebin El-Koom	Year:11
Subject Code: Physics 2	(First)
First Semester Exam.	Part: Electric Eng.
Academic Year: 2013/2014	Time Allowed: 3 hours

Important: This exam. Measures ILOY's no (a1-1,a1-2,b3-1,b3-2, ,c1-1,c1-2, d3........)
Remarks: No of pages: 2
Allowed Tables and Charts: None
Answer All the Following Questions:
[90Marks]

Ouestion (1)

a) Determine the velocity of transverse wave in stretched string.
b) A wire of length 30 cm emits the fundamental note of frequency $\mathbf{3 0 0 H z}$ when under a certain initial tension. If the tension is increased By 10 N , the frequency increases to 400 Hz . Find the initial tension and mass of wire.

Ouestion (2)

[25 Marks]
a) Prove that the intensity of sound waves is directly proportional to the square of its amplitude.
b) Describe and explain Doppler effect.
c) An ambulance travels down a highway at a speed $40 \mathrm{~m} / \mathrm{sec}$. Its siren emits sound at a frequency of 450 Hz . What is the frequency heard by a passenger in a car traveling at $30 \mathrm{~m} / \mathrm{sec}$ in the opposite direction as the car approaches the ambulance and as the car moves. away from the ambulance. (Speed of sound $340 \mathrm{~m} / \mathrm{sec}$).

Question (3)

[20 Marks]
a) Prove that the total energy of electron in hydrogen atom is inversely proportional to the square of quantum number.
b) The radius of third Bohr orbit in hydrogen atom is 0.22 nm . Compute the speed of the electron in this orbit and its frequency of rotation. Compare the wavelength of the radiation which it would emit if considered as a classical antenna with the second line in the Balmer series. ($\left.\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-28} \mathrm{~g}, \mathrm{~h}=6.62 \times 10^{-34} \mathrm{~J} . S e c\right)$.
a) Determine the relation between electric field, \mathbb{E}, and magnetic field, \mathbb{B}, in an electro-magnetic waves.
b) Explain: (i) displacement current, (ii) impurity semiconductor.
c) Prove that the intensity of the interference light waves is directly proportional to the square of its amplitude.

> أهد / السيـ محمد فرج عبدالرحيم
مع أطيب الأمنيات بالتوفيق والنجاح

This exam measures the following ILOs

